Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

SUM(nil) → 01(#)
*1(*(x, y), z) → *1(y, z)
PROD(app(l1, l2)) → PROD(l2)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
*1(x, +(y, z)) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
+1(0(x), 0(y)) → +1(x, y)
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
+1(+(x, y), z) → +1(y, z)
PROD(app(l1, l2)) → PROD(l1)
*1(1(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
+1(0(x), 0(y)) → 01(+(x, y))
*1(1(x), y) → +1(0(*(x, y)), y)
APP(cons(x, l1), l2) → APP(l1, l2)
SUM(cons(x, l)) → +1(x, sum(l))
+1(1(x), 1(y)) → +1(x, y)
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
+1(+(x, y), z) → +1(x, +(y, z))
SUM(cons(x, l)) → SUM(l)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
PROD(cons(x, l)) → PROD(l)
*1(x, +(y, z)) → *1(x, z)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

SUM(nil) → 01(#)
*1(*(x, y), z) → *1(y, z)
PROD(app(l1, l2)) → PROD(l2)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
*1(x, +(y, z)) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
+1(0(x), 0(y)) → +1(x, y)
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
+1(+(x, y), z) → +1(y, z)
PROD(app(l1, l2)) → PROD(l1)
*1(1(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
+1(0(x), 0(y)) → 01(+(x, y))
*1(1(x), y) → +1(0(*(x, y)), y)
APP(cons(x, l1), l2) → APP(l1, l2)
SUM(cons(x, l)) → +1(x, sum(l))
+1(1(x), 1(y)) → +1(x, y)
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
+1(+(x, y), z) → +1(x, +(y, z))
SUM(cons(x, l)) → SUM(l)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
PROD(cons(x, l)) → PROD(l)
*1(x, +(y, z)) → *1(x, z)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SUM(nil) → 01(#)
*1(*(x, y), z) → *1(y, z)
PROD(app(l1, l2)) → PROD(l2)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
*1(x, +(y, z)) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
+1(+(x, y), z) → +1(y, z)
*1(1(x), y) → 01(*(x, y))
PROD(app(l1, l2)) → PROD(l1)
*1(1(x), y) → *1(x, y)
+1(0(x), 0(y)) → 01(+(x, y))
*1(1(x), y) → +1(0(*(x, y)), y)
APP(cons(x, l1), l2) → APP(l1, l2)
SUM(cons(x, l)) → +1(x, sum(l))
+1(1(x), 1(y)) → +1(x, y)
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
SUM(cons(x, l)) → SUM(l)
+1(+(x, y), z) → +1(x, +(y, z))
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
*1(x, +(y, z)) → *1(x, z)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 5 SCCs with 11 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l1), l2) → APP(l1, l2)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP(cons(x, l1), l2) → APP(l1, l2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1, x2)
cons(x1, x2)  =  cons(x1, x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
APP2: multiset
cons2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(y, z)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(1(x), 1(y)) → +1(+(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
SUM(cons(x, l)) → SUM(l)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
The remaining pairs can at least be oriented weakly.

SUM(cons(x, l)) → SUM(l)
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  SUM(x1)
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  x2

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
SUM1: multiset
app2: [2,1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(x, l)) → SUM(l)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SUM(cons(x, l)) → SUM(l)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  SUM(x1)
cons(x1, x2)  =  cons(x1, x2)

Recursive path order with status [2].
Quasi-Precedence:
cons2 > SUM1

Status:
SUM1: multiset
cons2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(*(x, y), z) → *1(y, z)
*1(x, +(y, z)) → *1(x, z)
*1(1(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)
*1(0(x), y) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


*1(*(x, y), z) → *1(y, z)
*1(*(x, y), z) → *1(x, *(y, z))
The remaining pairs can at least be oriented weakly.

*1(x, +(y, z)) → *1(x, z)
*1(1(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)
*1(0(x), y) → *1(x, y)
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  x1
*(x1, x2)  =  *(x1, x2)
+(x1, x2)  =  +(x1, x2)
1(x1)  =  x1
0(x1)  =  x1
#  =  #

Recursive path order with status [2].
Quasi-Precedence:
[*2, #] > +2

Status:
+2: [1,2]
#: multiset
*2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(x, +(y, z)) → *1(x, z)
*1(1(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)
*1(0(x), y) → *1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


*1(0(x), y) → *1(x, y)
The remaining pairs can at least be oriented weakly.

*1(x, +(y, z)) → *1(x, z)
*1(1(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  x1
+(x1, x2)  =  +(x1)
1(x1)  =  x1
0(x1)  =  0(x1)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
+1: [1]
01: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(x, +(y, z)) → *1(x, z)
*1(1(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)
The remaining pairs can at least be oriented weakly.

*1(1(x), y) → *1(x, y)
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  *1(x2)
+(x1, x2)  =  +(x1, x2)
1(x1)  =  1

Recursive path order with status [2].
Quasi-Precedence:
[*^11, +2]

Status:
*^11: multiset
+2: multiset
1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(1(x), y) → *1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


*1(1(x), y) → *1(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
*1(x1, x2)  =  *1(x1, x2)
1(x1)  =  1(x1)

Recursive path order with status [2].
Quasi-Precedence:
[*^12, 11]

Status:
*^12: multiset
11: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

PROD(app(l1, l2)) → PROD(l2)
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → PROD(l1)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROD(app(l1, l2)) → PROD(l2)
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → PROD(l1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PROD(x1)  =  PROD(x1)
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  cons(x2)

Recursive path order with status [2].
Quasi-Precedence:
[PROD1, app2, cons1]

Status:
PROD1: multiset
app2: multiset
cons1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.